多元函数在某一点的极限不存在可以说明在这个点处不连续,但不能说明在这个点的偏导数不存在,例如分段函数f(x,y)=xy/(x^2+y^2),x^2+y^2不等于0,f(x,y)=0,x^2+y^2=0这个函数在点(0,0)处的偏导数极限不存在,但他在(0,0)处的偏导数值是存在的,fx(0,0)=fy(0,0)=0。希望以后回答别人问题的人能先弄清正确答案,不要想当然,这样不光会误导问问题的人还会影响后面看到这个问题的人,我看了前一位大佬的回答后就被误导了,后来问了高数老师才明白
多元函数在某一点极限不存在,则在此点不连续,故不存在偏导数,偏导数是指沿某一个固定方向的导数,不是所有方向。fx(x,y)=fy(x,y)=常数A不能证明此点在某一方向的偏导数存在或不存在。
多元函数在某一点极限不存在,不排除还有偏导数存在但不是所有方向偏导数存在。反之极限存在也不一定存在偏导数,题目上就说在某一点偏导数不存在,只用证明fx(x,y)=fy(x,y)=常数A就说明偏导数存在吗?在线等急。
极限不存在,偏导数可能存在。例如f(x,y)={xy/(x²+y²),(x,y)不=(0,0) 0,(x,y)=(0,0).
它的极限不存在,但是偏导数存在。