请问这个积分怎么求 ∫(t^2)/(t^2-2t-3)

2024-12-22 02:17:29
推荐回答(3个)
回答1:

你好:
解: 原式= ∫(t^2)/(t^2-2t-3)dt
= ∫1dt +∫2t+3/(t^2-2t-3)dt
=t +∫2t-2/(t^2-2t-3)dt + +∫5/(t^2-2t-3)dt
=t + ln|t^2-2t-3| + ∫5/(t^2-2t-3)dt
=t + ln|t^2-2t-3| + 5/4 ∫(1/(t-3)) -1/(t+1))dt
=t + ln|t^2-2t-3| + 5/4*ln|t-3| - 5/4ln|t+1| + C

回答2:

∫(t^2)/(t^2-2t-3)dt

=∫(t^2-2t-3+2t+3)/(t^2-2t-3)dt
=∫dt+∫(2t-3)/(t²-2t-3)dt
=t+∫(2t-2-1)/(t²-2t-3)dt
=t+∫d(t²-2t-3)/(t²-2t-3)-∫1/(t+1)(t-3)dt
=t+ln|t²-2t-3|-1/4∫(1/(t-3)-1/(t+1))dt
=t+ln|t²-2t-3|-1/4ln|t-3|+1/4ln|t+1|+c

回答3:

先把里面的数导回来,再化简不就搞定了化简结果∫1+2/2t-2