三角函数:设a为锐角,若cos(a+π⼀6)=4⼀5,则sin(2a+π⼀12)的值为多少? 详细过程。

2025-02-03 00:03:40
推荐回答(4个)
回答1:

解:
a是锐角
π/2cos(a+π/6)=4/5,
sin(a+π/6)=3/5
sin(2a+π/3)=2sin(a+π/6)cos(a+π/6)=2*(4/5)*(3/5)=24/25
cos(2a+π/3)=2cos²(a+π/6)-1=2*(4/5)²-1=7/25

sin(2a+π/12)
=sin[(2a+π/3)-π/4]
=sin(2a+π/3)cos(π/4)-cos(2a+π/3)cos(π/4)
=(24/25)*(√2/2)-(7/25)*(√2/2)
=17√2/50

回答2:

sin(2a+π/12)=sin(2a+π/3 -π/4)
令a+π/6=x
于是化简成sin(2x-π/4)=sin2xcosπ/4-cos2xsinπ/4=2sinxcosxcosπ/4-(2cosxcosx-1)sinπ/4
带入已知条件cosx=4/5 sinx=3/5
得到待求式子=2*0.8*0.6*cosπ/4-7/25sinπ/4=17/25 *(1/2)^1/2

回答3:

设α为锐角,若cos(α+
π6)=
35,则sin(2α+
π12)=
31
25031
250

回答4:

3/5