1.
a(n+1)=(1+1/n)an+(n+1)/2^n
a(n+1)=[(n+1)/n]an+(n+1)/2^n
两边同除(n+1)得:a(n+1)/(n+1)=an/n+1/2^n
b1=a1/1=1
b(n+1)-bn=1/2^n
n>=2时
b2-b1=1/2
b3-b2=1/2^2
……
bn-b(n-1)=1/2^(n-1)
把以上n-1个等式相加:bn-b1=bn-1=1/2+1/2^2+…+1/2^(n-1)=1-1/2^(n-1)
bn=2-1/2^(n-1),b1=1也适合此式。
所以,数列{bn}的通项公式为:bn=2-1/2^(n-1),n为正整数。
2.
bn=an/n=2-1/2^(n-1)
an=2n-n/2^(n-1)
Sn=2-1/2^0+4-2/2+6-3/2^2+…+2n-n/2^(n-1)
=(2+4+6+…+2n)-[1/2^0+2/2+3/2^3+…+n/2^(n-1)]
=n(n+1)-[1/2^0+2/2+3/2^3+…+n/2^(n-1)]
设Tn=1/2^0+2/2+3/2^3+…+n/2^(n-1) (1)
(1/2)*(1)得:(1/2)Tn=1/2+2/2^2+3/2^3+…+n/2^n (2)
(1)-(2)得:
(1/2)Tn=1+1/2+1/2^2+1/2^3+…+1/2^(n-1)-n/2^n=2-1/2^(n-1)-n/2^n
Tn=4-1/2^(n-2)-2n/2^(n-2)=4-(2n+1)/2^(n-2)
Sn=n(n+1)-Tn=n(n+1)+(2n+1)/2^(n-2)-4,n为正整数。
.