解不等式|(x-1)⼀(x^2-x+1)|<1

2024-12-18 17:02:40
推荐回答(4个)
回答1:

解不等式|(x-1)/(x²-x+1)|<1
解:原不等式等价于不等式:-1<(x-1)/(x²-x+1)<1;因此可拆成两个不等式:
(x-1)/(x²-x+1)<1...........(1)
(x-1)/(x²-x+1)>-1.........(2)
由(1)得1-(x-1)/(x²-x+1)=[(x²-x+1)-(x-1)]/(x²-x+1)=(x²-2x+2)/(x²-x+1)>0
由于分母x²-x+1的判别式Δ=1-4=-3<0,故对任何x都有x²-x+1>0,于是可去分母得同解不等式:
x²-2x+2=(x-1)²+1≧1>0,而此不等式对任何x都成立,故其解为x∈R;
由(2)得(x-1)/(x²-x+1)+1=[(x-1)+(x²-x+1)]/(x²-x+1)=x²/(x²-x+1)>0,同理去分母得x²>0,故其解
为x≠0.
(1)∩(2)={x︱x∈R,且x≠0}为原不等式的解集。

回答2:

|(x-1)/(x^2-x+1)|<1
-1<(x-1)/(x²-x+1)<1
(1) (x-1)/(x²-x+1)>-1
(x-1)/(x²-x+1)+1>0
(x-1+x²-x+1)/(x²-x+1)>0
x²/(x²-x+1)>0
因为:x²-x+1>0
所以:x²>0
x≠0
(2) (x-1)/(x²-x+1)<1
(x-1)/(x²-x+1)-1<0
(x-1-x²+x-1)/(x²-x+1)<0
(x²-2x+2)/(x²-x+1)>0
因为:x²-x+1>0;x²-2x+2>0
所以,x∈R
综合起来:x取x≠0的任何实数

回答3:

解:化为:|x-1|<|x^2-x+1|
又因为:x^2-x+1——恒大于0
所以,得:|x-1| 得:-(x^2-x+1) 即:-(x^2-x+1) 解得:x≠0 且 x取一切实数
所以,解集为:x≠0

回答4:

|(x-1)/(x^2-x+1)|<1
-1<(x-1)/(x^2-x+1)<1

因为x^2-x+1=(x-1/2)^2+3/4>0
所以-(x^2-x+1)
-x^2+x-10、x<0或x>0。
x-10、解集为R。

所以,原不等式解集为x<0或x>0。