看分母里的通项是个等差数列 A=n(n+1)/2
即通项为2/n(n+1)对其裂项得 2[1/n-1/(n+1)]
则从头到尾开始加S=2[1-1/2+1/2-1/3'''''''1/n-1/(n+1)]
=2-2/(n+1)(前n项和就是这个 下面是估算)
对其求极限可得S=2
1+2+3+……+n=n(n+1)/2
所以Sn=2/(1×2)+2/(2×3)+……+2/[n(n+1)]=2[(1-1/2)+(1/2-1/3)+……+(1/n-1/(n+1))]=2[1-1/(n+1)]=2n/(n+1)
1/(1+2)+1/(1+2++3)+……+1/(1+2+3+……+n)
=2*【1/2*(1+2)+1/2*(1+2++3)+……+1/2*(1+2+3+……+n)】
=2*【1/2-1/3+1/3-1/4+……+1/n-1/(n+1)】
=2*【1/2-1/(n+1)】
=(n-1)/(n+1)
等于50