解:∵1/ x -1/ y =3,
∴y-x=3xy,
∵原式=2x-2y-14xy /(x-y)-2xy =2(x-y)-14xy /(x-y)-2xy ,
将x-y=-3xy代入得:
∴原式=2×(-3xy)-14xy /-3xy-2xy =-20xy /-5xy =4.
故答案为4.
1/x-1/y=3
(2x-14xy-2y)/(x-2xy-y)
分子分母同时除以xy得
=[2/y-14-2/x]/[1/y-2-1/x]
=[-2(1/x-1/y)-14]/[-(1/x-1/y)-2]
带入 1/x-1/y=3得
=[-2×3-14]/(-3-2)
=(-20)/(-5)
=4
先同时除以xy
(2x-14xy-2y)/(x-2xy-y)
=(2/y-14-2/x)/(1/y-2-1/x)
=2(1/x-1/y+7)/(1/x-1/y+2)
=2*(3+7)/(3+2)
=4
解:∵1/x-1/y=3,∴y-x=3xy,x-y=-3xy
(2x-14xy-2y)/(x-2xy-y)
=[2(x-y)-14xy]/(x-y-2xy)
=[2X(-3xy)-14xy]/(-3xy-2xy)
=(-6xy-14xy)/(-5xy)
=(-20xy)/(-5xy)
=4
1/x-1/y=3,可得:(y-x)/xy=3,所以y-x=3xy
所以2x-2y=2(x-y)=-6xy
所以2x-14xy-2y=-20xy
所以x-2xy-y=-5xy
所以2x-14xy-2y/x-2xy-y=(-20xy)/(-5xy)=4