已知关于x的方程x²-2(a-2)x+a²=0,试问:是否存在实数a,使得方程的两个实数平方和等于

56若存在,求出a的值。若不存在 试说明理由
2024-12-29 01:24:21
推荐回答(2个)
回答1:

x1+x2=2(a-2)
x1x2=a²
x1²+x2²
=(x1+x2)²-2x1x2
=4a²-16a+16-2a²=56
a²-8a-20=0
(a-10)(a+2)=0
a=10,a=-2
判别式△>=0
4(a-2)²-4a²>=0
-4a+4>=0
所以存在
a=-2

回答2:

原式=>
x1+x2=2(a-2)
x1x2=a^2
x1^2+x2^2=(x1+x2)^2-2x1x2=2a^2-16a+16=56 <=> a^2-8a-20=0 => a1=10, a2=-2
验算:
x^2-16x+100=0 delta<0 无实根 => a!=10
x^2+8x+4=0 delta>0 两实根
综上 a=-2