原式=∫x/(x^4-1)dx
=∫x/[(x^2-1)*(x^2+1)]dx
=1/2∫x/(x^2-1)-x/(x^2+1)dx
=1/2∫x/(x^2-1)dx-1/2∫x/(x^2+1)dx
=1/2*1/2∫1/(x^2-1)d(x^2-1)-1/2*1/2∫1/(x^2+1)d(x^2+1)
=1/4ln|x^2-1|-1/4(x^2+1)
=1/4ln|(x^2-1)/(x^2+1)|+C
你可以简单验证,这就是所求的答案.
这上面编辑数学公式不太好看,如果你还有问题,追问就可以了~~
原式=1/2*∫d(x^2)/(x^2+1)(x^2-1)
=1/4*∫[1/(x^2-1)-1/(x^2+1)]d(x^2)
=1/4*[∫d(x^2-1)/(x^2-1)-∫d(x^2+1)/(x^2+1)]
=1/4*(ln|x^2-1|-ln|x^2+1|)+C