有理数 英文:rational number 读音:yǒu lǐ shù 整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。从而有理数又称作分数。分数希腊文称为 λογο,原意为“成比例的数”(rational number)意思,但中文翻译不恰当,逐渐变成“有道理的数”。 任何一个有理数都可以在数轴上的点来表示。其中包括整数和通常所说的“分数”,此“分数”乃为有限小数或无限循环小数。 无限不循环小数称之为无理数(如圆周率π),有理数和无理数统称为实数。
有理数可包括: (1) 整数包含了:正整数、0、负整数统称为整数。 (2)分数包含了:正分数、负分数统称为分数。 当然,至于有限小数、无限循环小数,这些“小数”可都统一成分数。 如3,-98.11,5.72727272……,7/22都是有理数。全体有理数构成一个集合,即有理数集合,可用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。有理数集是实数集的子集,即Q?R(相关的内容见数系的扩张)。有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):①加法的交换律 a+b=b+a;②加法的结合律a+(b+c)=(a+b)+c;③存在数0,使 0+a=a+0=a;④乘法的交换律 ab=ba;⑤乘法的结合律 a(bc)=(ab)c;⑥乘法的分配律 a(b+c)=ab+ac。0a=0 文字解释:一个数乘0还等于0。此外,有理数是一个序域,即在其上存在一个次序关系≤。0的绝对值还是0.有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,而“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理(无理数就是无限不循环小数,π也是其中一个无理数)。
编辑本段有理数的运算
有理数加减混合运算 有理数的巧算
1.有理数加减统一成加法的意义: 对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的算式是几个正数或负数的和的形式,我们把这样的式子叫做代数和。 2.有理数加减混合运算的方法和步骤: (1)运用减法法则将有理数混合运算中的减法转化为加法。 (2)运用加法法则,加法交换律,加法结合律简便运算。 初中数学书中介绍的用计算器做有理数运算
一般情况下,有理数是这样分类的: 整数、分数;正数、负数和零;负有理数,正有理数。整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。 凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数。 在有理数中,不是无限不循环小数的小数就是分数。
编辑本段有理数的运算法则
一、加法
有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:一是确定结果的符号;二是求结果的绝对值. 在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则。在应用过程中,一定要牢记"先符号,后绝对值",熟练以后就不会出错了. 多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算. 法则 1.同号相加,取相同符号,并把绝对值相加。 2.绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。 3.一个数同0相加,仍得这个数。 4.相反数相加结果一定得0。 交换律和结合律 有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为: 交换律:a+b=b+a 两个数相加,交换加数的位置和不变。 结合律:a+b+c=(a+b)+c=a+(b+c) 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
二、减法
有理数减法法则:减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运算,减数变成它的相反数做加数。一不变:被减数不变。可以表示成: a-b=a+(-b)。
三、乘法
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。例:(-5)×(-3)=15 (-6)×4=-24 。 (2)任何数同0相乘,都得0。 例:0×1=0 (3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。并把其绝对值相乘。例:(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数 (4)几个数相乘,有一个因数为0时,积为0。 例:3×(-2)×0=0 。 (5)乘积为1的两个有理数互为倒数(reciprocal)。例如,—3与—1/3,—3/8与—8/3。
四、除法
(1)除以一个数等于乘以这个数的倒数。(注意:0没有倒数) (2)两数相除,同号为正,异号为负,并把绝对值相除。 (3)0除以任何一个不等于0的数,都等于0。 注意:0在任何条件下都不能做除数。[1]
编辑本段将无限循环小数化成分数
0.|a1a2a3a4a5a6…an|=? 令x=0.|a1a2a3a4a5a6…an|= 则10^n*x=a1a2a3a4a5…an.|a1a2a3a4a5a6…an| (10^n-1)x=a1a2a3a4…an x=a1a2a3a4…an/(10^n-1) 创始来源 古埃及人约于公元前17世纪初已使用分数,中国《九章算术》中也载有分数的各种运算。分数的使用是由于除法运算的需要。除法运算可以看作求解方程px=q(p≠0),如果p,q是整数,则方程不一定有整数解。为了使它恒有解,就必须把整数系扩大成为有理系。 关于有理数系的严格理论,可用如下方法建立。在Z×(Z -{0})即整数有序对(但第二元不等于零)的集上定义的如下等价关系:设 p1,p2 Z,q1,q2 Z - {0},如果p1q2=p2q1。则称(p1,q2)~(p2,q1)。Z×(Z -{0})关于这个等价关系的等价类,称为有理数。(p,q)所在的有理数,记为 。一切有理数所成之集记为Q。令整数p对应一于,即(p,1)所在的等价类,就把整数集嵌入到有理数的集中。因此,有理数系可说是由整数系扩大后的数系。 有理数集合是一个数域。任何数域必然包含有理数域。即有理数集合是最小的数域。 有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。 依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。采用度量,有理数构成一个度量空间,这是上的第三个拓扑。幸运的是,所有三个拓扑一致并将有理数转化到一个拓扑域。有理数是非局部紧致空间的一个重要的实例。这个空间也是完全不连通的。有理数不构成完备的度量空间;实数是的完备集。
编辑本段p进数
除了上述的绝对值度量,还有其他的度量将转化到拓扑域: 设p是素数,对任何非零整数a设 | a | p= p- n,这里pn是p的最高次幂除a 另外 | 0 | p= 0。对任何有理数,设。 则在上定义了一个度量。 度量空间不完备,它的完备集是p进数域。 一个困难的问题:有理数的边界在哪里? 根据定义,无限循环小数和有限小数(整数可认为是小数点后是0的小数),统称为有理数,无限不循环小数是无理数。 但人类不可能写出一个位数最多的有理数,对全地球人类,或比地球人更智慧的生物来说是有理数的数,对每个地球人来说,可能是无法知道它是有理数还是无理数了。因此有理数和无理数的边界,竟然紧靠无理数,任何两个十分接近的无理数中间,都可以加入无穷多的有理数,反之也成立。 竟然没有人知道有理数的边界,或者说有理数的边界是无限接近无理数的。 定理:位数最多的非无限循环有理数是不可能被写出的,尽管它的定义是有有限位,但它是无限趋近于无理数的,以致于没有手段进行判断。 证明:假设位数最多的非无限循环有理数被写出,我们在这个数的最后再加一位,这个数还是有限位有理数,但位数比已写出有理数多一位,证明原来写出的不是位
整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。从而有理数又称作分数。分数希腊文称为 λογο,原意为“成比例的数”(rational number)意思,但中文翻译不恰当,逐渐变成“有道理的数”。
任何一个有理数都可以在数轴上的点来表示。其中包括整数和通常所说的“分数”,此“分数”乃为有限小数或无限循环小数。
无限不循环小数称之为无理数(如圆周率π),有理数和无理数统称为实数。
1. 有理数为整数与分数的集合,而 分数=p/q, 即两个互质整数的商。
2. 有理数是有限小数以及无限循环小数的集合。