不等式(x-2)^2(3-x)(x-4)^3(x-1)>=0的解集为

2025-01-03 22:47:56
推荐回答(2个)
回答1:

首先平方项一定是大于等于0的
于是变形为(3-x)(x-4)^3(x-1)>=0
再可以变为(x-3)(x-4)(x-1)<=0
再通过穿针法得出x≤1或3≤x≥4

回答2:

(x-2)^2(3-x)(x-4)^3(x-1)>=0
(x-2)^2(x-4)^2(x-3)(x-4)(x-1)<=0
(x-2)^2(x-4)^2>=0
(x-3)(x-4)(x-1)<=0
(1)当x<=1
(x-3)<0
(x-4)<0
(x-1)<=0
(2)x>1
(x-1)>0
(x-3)(x-4)(x-1)<=0
(x-3)(x-4)<=0
3<=x<=4
所以解集为x<=1或3<=x<=4