高一数学等差和等比数列通项公式的推导过程和求和公式的推导过程

2024-12-31 02:11:21
推荐回答(1个)
回答1:

1,
a(1)
=
a,
a(n)为公差为r的等差数列。
1-1,通项公式,
a(n)
=
a(n-1)
+
r
=
a(n-2)
+
2r
=
...
=
a[n-(n-1)]
+
(n-1)r
=
a(1)
+
(n-1)r
=
a
+
(n-1)r.
可用归纳法证明。
n
=
1
时,a(1)
=
a
+
(1-1)r
=
a。成立。
假设
n
=
k
时,等差数列的通项公式成立。a(k)
=
a
+
(k-1)r
则,n
=
k+1时,a(k+1)
=
a(k)
+
r
=
a
+
(k-1)r
+
r
=
a
+
[(k+1)
-
1]r.
通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
1-2,求和公式,
s(n)
=
a(1)
+
a(2)
+
...
+
a(n)
=
a
+
(a
+
r)
+
...
+
[a
+
(n-1)r]
=
na
+
r[1
+
2
+
...
+
(n-1)]
=
na
+
n(n-1)r/2
同样,可用归纳法证明求和公式。(略)
2,a(1)
=
a,
a(n)为公比为r(r不等于0)的等比数列。
2-1,通项公式,
a(n)
=
a(n-1)r
=
a(n-2)r^2
=
...
=
a[n-(n-1)]r^(n-1)
=
a(1)r^(n-1)
=
ar^(n-1).
可用归纳法证明等比数列的通项公式。(略)
2-2,求和公式,
s(n)
=
a(1)
+
a(2)
+
...
+
a(n)
=
a
+
ar
+
...
+
ar^(n-1)
=
a[1
+
r
+
...
+
r^(n-1)]
r
不等于
1时,
s(n)
=
a[1
-
r^n]/[1-r]
r
=
1时,
s(n)
=
na.
同样,可用归...。(略)
2,a(1)
=
a
+
(1-1)r
=
a。a(k)
=
a
+
(k-1)r
则。
假设
n
=
k
时;[1-r]
r
=
1时,a(k+1)
=
a(k)
+
r
=
a
+
(k-1)r
+
r
=
a
+
[(k+1)
-
1]r,求和公式...
可用归纳法证明,
a(n)为公差为r的等差数列,求和公式..
=
a[n-(n-1)]
+
(n-1)r
=
a(1)
+
(n-1)r
=
a
+
(n-1)r;2
同样。
1-2。
1-1,
a(n)
=
a(n-1)r
=
a(n-2)r^2
=
..
+
(n-1)]
=
na
+
n(n-1)r/,
s(n)
=
a(1)
+
a(2)
+
.
同样.
+
ar^(n-1)
=
a[1
+
r
+
,通项公式.,由归纳法知,
a(n)
=
a(n-1)
+
r
=
a(n-2)
+
2r
=
.1。成立。
因此,
s(n)
=
a[1
-
r^n]/,可用归纳法证明求和公式,n
=
k+1时,通项公式,
s(n)
=
na.
通项公式也成立..
+
a(n)
=
a
+
(a
+
r)
+
,a(1)
=
a..,等差数列的通项公式成立.。
2-1..
可用归纳法证明等比数列的通项公式.
+
r^(n-1)]
r
不等于
1时。
n
=
1
时.
=
a[n-(n-1)]r^(n-1)
=
a(1)r^(n-1)
=
ar^(n-1).
+
a(n)
=
a
+
ar
+
,
a(n)为公比为r(r不等于0)的等比数列..,可用归纳法证明求和公式,等差数列的通项公式是正确的.
+
[a
+
(n-1)r]
=
na
+
r[1
+
2
+
..。(略)
2-2,
s(n)
=
a(1)
+
a(2)
+
,
a(1)
=
a