不定积分怎么算?

2024-11-24 09:21:44
推荐回答(1个)
回答1:

令x=tant,则dx=sec^2tdt
原式=∫(tant*e^t)/sec^3t*sec^2tdt
=∫sint*e^tdt
=∫sint*d(e^t)
=sint*e^t-∫e^t*costdt
=sint*e^t-∫cost*d(e^t)
=sint*e^t-cost*e^t-∫e^t*sintdt
即∫sint*e^tdt=e^t*(sint-cost)/2+C
原式=e^(arctanx)*[(x-1)/√(1+x^2)]+C,其中C是任意常数