已知sinα-sinβ=-(1⼀3),cosα-cosβ=1⼀2,求cos(α-β)的值

已知sinα-sinβ=-(1/3),cosα-cosβ=1/2,求cos(α-β)的值
2024-12-31 15:55:14
推荐回答(3个)
回答1:

解:sina-sinb=-1/3
(sina-sinb)^2=(-1/3)^2
sin^2a-2sinasinb+sin^2b=1/9(1)
cosa-cosb=1/2
(cosa-cosb)^2=(1/2)^2
cos^2a-2cosacosb+cos^2b=1/4(2)
(1)+(2) (sin^2a+cos^2a)-2sinasinb-2cosacosb+(sin^2b+cos^2b)=1/9+1/4
1-2(sinasinb+cosacosb)+1=13/36
-2(cosacosb+sinasinb)=13/36-2
-2cos(a-b)=-59/36
cos(a-b)=59/72
答:cos(a-b)的值是59/72

回答2:


求采纳

回答3:

59/72