a+b+c=11/a+1/b+1/c=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)而a.b.c∈R*,那么a/b>0 b/c>0 a/c>0a/b+b/a>=2√(a/b*b/a)=2a/c+c/a>=2√(a/c*c/a)=2b/c+c/b>=2√(b/c*c/b)=2所以1/a+1/b+1/c=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=3+2+2+2=9