(I)当a=2时,不等式f(x)≥4-|x-1|即为|x-2|≥4-|x-1|,
①当x≤1时,原不等式化为2-x≥4+(x-1),得x≤?
,1 2
故x≤?
;1 2
②当1<x<2时,原不等式化为2-x≥4-(x-1),得2≥5,
故1<x<2不是原不等式的解;
③当x≥2时,原不等式化为x-2≥4-(x-1),得x≥
,7 2
故x≥
.7 2
综合①、②、③知,原不等式的解集为(?∞,?
]∪[1 2
,+∞).7 2
(Ⅱ)证明:由f(x)≤1得|x-a|≤1,从而-1+a≤x≤1+a,
∵f(x)≤1的解集为{x|0≤x≤2},
∴
得a=1,∴
?1+a=0 1+a=2
+1 m
=a=1.1 2n
又m>0,n>0,∴m+2n=(m+2n)(
+1 m
)=2+(1 2n
+2n m
)≥2+2m 2n
=4,
?2n m
m 2n
当且仅当
=2n m
即m=2n时,等号成立,此时,联立m 2n
+1 m
=1,得1 2n