解:
等式左边通分,得:
-1/(x-1)(x-2)
等式右边通分,得:
-1/(x-3)(x-4)
所以-1/(x-1)(x-2)=-1/(x-3)(x-4)
即:1/(x-1)(x-2)=1/(x-3)(x-4)
等式两边同乘以(x-1)(x-2)得:
(x-1)(x-2)/(x-3)(x-4)=1
4x=10
x=5/2
解1/x+1-1/x+3=1/x+2-1/x+4
(x+3-x-1)/(x²+4x+3)=(x+4-x-2)/(x²+6x+8)
2/(x²+4x+3)=2/(x²+6x+8)
∴x²+4x+3=x²+6x+8
4x-6x=8-3
-2x=5
∴x=-2.5
1/x+1-1/x+3=1/x+2-1/x+4
(x+3-x-1)/(x²+4x+3)=(x+4-x-2)/(x²+6x+8)
2/(x²+4x+3)=2/(x²+6x+8)
∴x²+4x+3=x²+6x+8
4x-6x=8-3
-2x=5
∴x=-2.5