已知抛物线C:y^2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点。(1)设l的斜率为1,求向量OA和向量OB的

2024-12-27 23:41:26
推荐回答(2个)
回答1:

(2)
抛物线焦点F坐标为(1,0),准线方程x=-1,设A坐标为(x1,y1)B坐标为(x2,y2)
点A到准线的距离D1=x1+1,点B到准线的距离D2=x2+1
向量FB=(x2-1,y2),向量AF=(1-x1,-y1),
由于向量FB=λ向量AF,故x2-1=λ(1-x1),且λ=|FB|/|AF|=D2/D1=(x2+1)/(x1+1)
两式联立解得:x1=1/λ,x2=λ
设直线l与y轴的交点为M(0,m),过B点做x轴的垂线,垂足是H,则|BH|=|y2|=√(4x2)=2√λ, RT△MOF∽RT△BHF,所以|OM|/|BH|=|OF|/|HF|
即|m|/2√λ=1/(λ-1) => |m|=2√λ/(λ-1),显然当λ=4时,|m|取得最大值4/3
当λ=9时,|m|取得最小值3/4
所以l在y轴上截距m的取值范围是[-4/3.-3/4]∪[3/4,4/3]

回答2:

极坐标你学过没有??这种涉及到焦点和比例之类的问题用极坐标相当适合,你自己先看看极坐标,看明白了我在讲给你听