(1).看到Sn的式子,可以把An变为Sn-Sn-1,所以将原式变为Sn=n^2(Sn-Sn-1)-n(n-1)。分解移项,得(n^2-1)Sn+n^2Sn-1+n(n-1) 两边同除n(n-1) 得 (n+1)Sn/n-nSn/n-1=1 所以数列{(n+1)Sn/n}是等差数列 令(n+1)Sn/n=Bn B1=1 ,所以Bn=n 所以Sn=n^2/(n+1)