解法一:原式=∫<0,1>dx∫
=(1/2)∫<0,1>(x-x³)dx
=(1/2)(12-1/4)
=1/8;
解法二:原式=∫<0,1>dy∫<0,y>xydx
=(1/2)∫<0,1>y³dy
=(1/2)(1/4)
=1/8。
原式=∫[0,1]dx∫[x,1]xydy
=(1/2)∫[0,1](x-x³)dx
=(1/2)(12-1/4)
=1/8