a^2/(a^4+1)=1/[(a^4+1)/a^2]
(a^4+1)/a^2=a^2+1/a^2
所以:a^2/(a^4+1)=1/[a^2+1/a^2]...............1
a^2-3a+1=0
除以a,
a-3+1/a=0
a+1/a=3
平方:
a^2+1/a^2+2=3
a^2+1/a^2=1代入1式:
a^2/(a^4+1)=1/[a^2+1/a^2]=1/1=1
a²-3a+1=0
等式两边同除以a
a-3+1/a=0
a+ 1/a=3
a²/(a⁴+1)=1/(a²+ 1/a²) 这一步是分子分母同除以a²
=1/(a²+2+1/a²-2)
=1/[(a+1/a)²-2]
=1/(3²-2)
=1/7
a^2—3a+1=0 可改写为a^2—2a+1-a=0 (a-1) ^2-a=0 (a-1)^2=a