4.2.1 Roberts算法原理
Roberts算子是一种最简单的算子,是一种利用局部差分算子寻找边缘的算子,他采用对角线方向相邻两象素之差近似梯度幅值检测边缘。检测垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感,无法抑制噪声的影响。
4.2.2 算法流程
Roberts算子在2×2领域上计算对角导数
(4-1)
成为Roberts交叉算子。在实际应用中为了简化计算,用梯度函数的Roberts绝对值来近似
(4-2)另外还可以用Roberts 最大算子来计算
(4-3)
上式能够提供较好的不变性边缘取向。对于同等长度但取向不同的边缘,应用Roberts最大值算子比应用Roberts交叉算子所得到的合成幅度变化小。Roberts边缘检测算子的卷积算子为
Roberts 边缘算子方向模版
由上面两个卷积算子对图像运算后,代入(3-7)式,可求得图像的梯度幅度值,然后选取门限TH,做如下判断>TH,为阶跃状边缘点为一个二值图像,也就是图像的边缘图像。4.4.1 Prewitt 算法原理
Prewitt边缘算子是一种边缘样板算子。Prewitt 从加大边缘检测算子的模板大小出发,由2×2 扩大到3×3 来计算差分算子,采用Prewitt 算子不仅能检测边缘点,而且能抑制噪声的影响。
Prewitt 采用计算偏微分估计的方法,由式(4-9)所示的两个卷积算子形成了Prewitt边缘算子,样板算子由理想的边缘子图像构成,依次用边缘样板去检测图像,与被检测区域最为相似的样板给出最大值,用这个最大值作为算子的输出
(4-9)
另一种方法是,可以将Prewitt算子扩展到八个方向,每个模版对特定的边缘方向做出最大响应,所有8个方向中最大值作为边缘幅度图像的输出,这些算子样板由离线的边缘子图像构成。依次用边缘样板去检测图像,与被检测区域最为相似的的样板给出最大值。定义Prewitt 边缘检测的算子模版如下:
(1)1方向 (2)2方向 (3)3方向 (4)4方
close all
clear all
I=imread('tig.jpg'); %读取图像
I1=im2double(I); %将彩图序列变成双精度
I2=rgb2gray(I1); %将彩色图变成灰色图
[thr, sorh, keepapp]=ddencmp('den','wv',I2);
I3=wdencmp('gbl',I2,'sym4',2,thr,sorh,keepapp); %小波除噪
I4=medfilt2(I3,[9 9]); %中值滤波
I5=imresize(I4,0.2,'bicubic'); %图像大小
BW1=edge(I5,'sobel'); %sobel图像边缘提取
BW2=edge(I5,'roberts'); %roberts图像边缘提取
BW3=edge(I5,'prewitt'); %prewitt图像边缘提取
BW4=edge(I5,'log'); %log图像边缘提取
BW5=edge(I5,'canny'); %canny图像边缘提取
h=fspecial('gaussian',5); %高斯滤波
BW6=edge(I5,'zerocross',[ ],h); %zerocross图像边缘提取
figure;
subplot(1,3,1); %图划分为一行三幅图,第一幅图
imshow(I2); %绘图
figure;
subplot(1,3,1);
imshow(BW1);
title('Sobel算子');
subplot(1,3,2);
imshow(BW2);
title('Roberts算子');
subplot(1,3,3);
imshow(BW3);
title('Prewitt算子');
在读图片的时候自己改下片名。