1/x(x-1) + 1/x(x+1) +1/(x+1)(x+2) +…+1/(x+9)(x+10)
=1/(x-1)-1/x+1/x-1/(x+1)+1/(x+1)-1/(x+2)+…+1/(x+9)-1/(x+10)
=1/(x-1)-1/(x+10)
=11/[(x-1)(x+10)]
原方程为:11/[(x-1)(x+10)]=11/(x-1)、1/(x+10)=1、x=-9。
经检验,x=-9是增根。
所以,原方程无根。
1/x(x-1) + 1/x(x+1) +1/(x+1)(x+2) +``` +1/(x+9)(x+10)=11/(x-1)
1/(x-1)-1/x+1/x-1/(x+1)+1/(x+1)-1/(x+2)+..........+1/(x+9)-1/(x+10)=11/(x-1)
1/(x-1)-1/(x+10)=11/(x-1)
[(x+10)-(x-1)]/(x-1)(x+10)=11/(x-1)
(x+10-x+1)/(x-1)(x+10)=11/(x-1)
11/(x-1)(x+10)=11/(x-1)
x+10=1
x=-9
经检验 x=-9是增根,所以方程无解
X=-9
1/x(x-1) + 1/x(x+1) +1/(x+1)(x+2) +…+1/(x+9)(x+10)
=1/(x-1)-1/x+1/x-1/(x+1)+1/(x+1)-1/(x+2)+…+1/(x+9)-1/(x+10)
=1/(x-1)-1/(x+10)
=11/[(x-1)(x+10)]
原式可写成
11/[(x-1)(x+10)]=11/(x-1)
x=-9 为增根,愿方程无解
1/(x-1)-1/x+1/x-1/(x+1) +1/(x+1)-1/(x+2)+.....+1/(x+9)-1/(x+10)=1/(x-1)-1/(x+10)=11/(x-1)(x+10)