初一数学的教学难点??

2024-12-13 00:31:17
推荐回答(3个)
回答1:

初中阶段是学生分析解决问题能力初步形成的阶段。对刚刚步入中学的初一学生,怎样提高分析解决问题的能力,教师必须在数学教学中重视数学思想方法形成的教育。进行数学思想方法教学应遵循几个原则:(1)是化隐为显原则。就是有意识地让学生将数学思想方法作为明确的学习对象,教学应当以知识为载体,把隐藏在知识中的思想方法揭露出来;(2)是循序渐进原则。必须结合教学内容和学生认知水平,反复孕育结论发展形成的过程,采用“小步走”、“多层次”的方式,以体现数学思想方法的教学;(3)是学生参与原则。应当认识到这样的教学是数学活动过程的教学,具有动态性、重思辨的特点,要求有学生积极参与其中,使学生逐步领悟、形成和掌握数学思想方法。我们应当按照这些原则来设计教学。
应用题对初一学生来说是一个数学学习的难点。这个阶段的应用题尽管在很大程度上还没有真正涉及到实际的应用,即使这样也有些学生对此感到头痛。为了处理好这个问题,我们应按上述原则,在教学中重视设置一些与讲授问题相关、简单且有层次的小练习,让学生通过这些小练习,逐渐体会如何分析问题以及解决问题的方法或思路。例如:甲、乙两站相距450km,一列慢车从甲站开出,每小时行驶60km;一列快车从乙站开出,每小时行驶90km。⑴两车同时开出,相向而行,多少小时相遇?⑵快车先开出30分钟后慢车开出,两车相向而行,慢车行驶了多少小时与快车相遇?讲解该问题前,我们可按解题思路先让学生想想两种车在具体时间内各走了多少路程,并推出 x 小时内所走路程的表达式;再让学生想想两车“相遇”在时间上有何特点,各自所走路程与两站间距离有何关系;然后让学生想想“快车先开出30分钟”对各自所走路程以及与两站间距离的关系会产生的影响等问题。通过这类小练习让学生沿着正确的解题方法做一遍,以理解解题的思想。这类小练习应具有由浅入深、由简单到复杂、每步过渡都有铺垫等特点,若再加上适当的图示,学生做起来就不会感觉有太大困难。显然,小练习是在教师引导下由学生自己完成,符合“学生参与原则”;围绕原问题,小练习按“小步走”的方式依次提问,难度由浅入深,符合“循序渐进原则”;小练习将原问题的基本面逐步展现出来,让学生看到解决原问题的方法与自己熟悉的方法之间的关系,符合“化隐为显原则”。
数学学习和记忆困难的主要原因在于数学语言和符号的具体性比较差,即数学学习材料的高度抽象性,不易唤起学生的视觉映像,这就容易使学生在学习中常会对一些类似的东西产生混淆,影响学习效果。对于初一的新生,我们更应重视这一点,以帮助他们形成心理映像。要让学生在头脑中形成某种“模型”,并以此作为参照物去逐渐摸索处理问题的方法,领悟出相应的知识概念,以增强长时间记忆的能力。
为了让初一学生熟悉具体数字计算,经常使用一些简单、具体的填空练习是一种较为有效的方法。如为了让学生理解有理数的加法运算(或其他运算),介绍完运算法则后,学生对抽象的符号表述不一定能很快形成心理映像,这时我们可以让学生在不同运算符两边填不同类型的具体数字来体会其运算法则。又如,为了让学生掌握公式 ,在介绍完公式特点后, 我们可先对公式左边变量给出不同的值,让学生练习填公式右边变量处应有的值,然后再反过来练习。通过这样的练习,学生就能较好地将如有理数运算法则和两数和(差)平方公式的“表象”(具体数字计算、对象的形象)与“言语”(抽象数学符号的表述)结合起来,进而理解这些数学知识并达到掌握应用的目的。

回答2:

呃、、最难的就是几何证明题了吧。。。
三角形、二元一次方程组 、不等式(组) 这几章很重要!
多边形内角和、外角和也。。。
【【上学期在于代数、下学期就重点在于证明、说理题,,多抓抓这些方面吧】】
====
呃。。你是想知道些什么/?我就姑且先回答这么多吧。。

回答3:

几何