解:∑n(x-1)^n=(x-1)∑n(x-1)^(n-1)设f(x)=∑n(x-1)^(n-1),逐项积分得:∫[1,x]f(x)dx=∫[1,x]∑n(x-1)^(n-1)dx=∑(x-1)^(n)=-1+1/x,所以:f(x)=-1/x^2,故:∑n(x-1)^n=-(x-1)/x^2