f(x)=[cos2x+1]+√3sin2x+3 =2sin(2x+π/6)+41、最小正周期是T=(2π)/(2)=π2、x∈(0,π/3],则:2x+π/6∈(π/6,5π/6],则:最大值是当x=π/6时取得的,最大值是6,最小值是当x=π/3时取得的,最小值是5。
=2cos^2x-1+√3sin2x+4=cos2x+√3sin2x+4=2sin(2x+π/6)+4T=π0<2X+π/6<=5π/6, 4