已知函数f(x)=sin(2x+π⼀6)+sin(2x-π⼀6)+2cos^2x +a,当x∈【-π⼀4,π⼀4】时,f(x)的最小值为-3,求a

2025-01-07 03:09:01
推荐回答(3个)
回答1:

f(x)=√3sin2x+cos2x+1+a
=2sin(2x+π/6)+1+a
该函数在区间【-π/3,π/6】上递增,
所以,在【-π/4,π/4】中,当X=-π/4时,f(x)有最小值:
f(x)min=2sin[2(-π/4)+π/6]
=-2cosπ/6+a+1
=-√3+a+1
=-3
所以a=-4+√3

回答2:

就是和差化积 积化和差的应用;在x∈【-π/4,π/4】时,f(x)=sin(2x+π/6)+sin(2x-π/6)+2cos^2x +a=√3sina(2x)+cos(2x)+1+a+=2sina(2x+π/3)+1+a≧-2+1+a=-3
a=-2

回答3:

f(x)=2sin(2x+30。)+a +1在[-45。,45。]上最小值为3,所以f(x=-45 。)=3,所以a=2+根号3