详细过程见图
∫sinxdx/(1+sinx)
=∫dx-∫dx/(1+sinx) 1+sinx=1+cos(π/2-x)=2cos(π/4-x/2)^2
=∫dx-∫d(x/2)/cos(π/4-x/2)^2
=x+tan(π/4-x/2)+C
∫xcosxdx/(sinx)^2
=∫xd(-1/sinx)
=x*(-1/sinx)+∫dx/sinx
=-x/sinx-(1/2)ln|1+cosx|/|1-cosx|+C
=-x/sinx-ln|1+cosx|/|sinx|+C