设x,y为实数,若若4x눀+y눀+xy=1,则2x+y的最大值是

我知道答案,求怎么做
2024-12-15 14:44:47
推荐回答(2个)
回答1:

4x^2+y^2 + xy = 1 => 4x^2+y^2 = 1 - xy, (2x+y)^2 = 1 + 3xy
4x^2+y^2 ≥ 2*2x*y = 4xy, 1-xy ≥4xy => xy ≤ 1/5
(2x+y)^2 = 1 + 3xy ≤ 1+ 3/5 = 8/5
2x+y ≤ √(8/5)
2x+y的最大值 √(8/5)

回答2:

2x+y的最大值是: 2√10/5.