2、化简(x^2+1)/(x^2-1)-(x-2)/(x-1)/(x-2)/x=(x^2+1)/(x^2-1)-x/(x-1)=[x^2+1-x(x+1)]/(x^2-1)=(1-x)/(x^2-1)=-1/(x+1)
3解方程(1)分式放左边(1+x)/(x-3)=2,1+x=2x-6,x=7
(2)左边通分x(x-2)/(x^2-4)-(x+2)^2/(x^2-4)=8/(x^2-4)分子相等x^2-2x-x^2-4x-4=8,-6x=12,x=-2.
(x2+1)/(x2-1)-(x-2)/(x-1)÷(x-2)/x
=(x2+1)/(x2-1)-(x-2)/(x-1)×∥/(x-2)
=(x2+1)/(x2-1)-x/(x-1)
=(x2+1)/(x2-1)-x(x+1)/(x2-1)
=(1-x)/(x2-1)
=-1/(x+1)
1/(x-3)=2+x/(3-x)
1=2(x-3)-x
1=2x-6-x
x=7