用平方差公式比较简单:
1²-2²+3²-4²+···+(2n-1)²-(2n)²
=(1²-2²)+(3²-4²)+···+[(2n-1)²-(2n)²]
=(1+2)(1-2)+(3+4)(3-4)+...+[(2n-1)+2n][(2n-1)-2n]
=-(1+2)-(3+4)-...-[(2n-1)+2n]
=-[1+2+3+4+...+(2n-1)+2n]
=-(2n)(2n+1)/2
=-n(2n+1)
如果用数学归纳法:
证:
n=1时,1²-2²=1-4=-3
-1×(2×1+1)=-1×3=-3
1²-2²=-1×(2×1-1),等式成立。
假设当n=k(k∈N,且k≥1时等式成立,即
1²-2²+3²-4²+...+(2k-1)²-(2k)²=-k(2k+1),则当n=k+1时,
1²-2²+3²-4²+...+(2k-1)²-(2k)²+(2k+1)²-(2k+2)²
=-k(2k+1)+(2k+1)²-4(k+1)²
=(2k+1)(-k+2k+1)-4(k+1)²
=(2k+1)(k+1)-4(k+1)²
=(k+1)[(2k+1)-4(k+1)]
=(k+1)(-2k-3)
=-(k+1)[2(k+1)+1]
等式同样成立。
综上,得1²-2²+3²-4²+...+(2n-1)²-(2n)²=-n(2n+1)。
求证的话应该是恒等式,你是求解吧?