1,f(x)=5(cosx)^2+(sinx)^2-4√3sinxcosx =4(cosx)^2-2√3sin2x+1 =2cos2x-2√3sin2x+3 =4cos(2x+π/3)+3 最小正周期为T=2π/2=π。2,-π/6<=x<=π/4,则0<=2x+π/3<=5π/6。 f(x)最小值是4cos5π/6+3=3-2√3,最大值是4cos0+3=7。 f(x)的值域是[3-2√3,7]。