关键是第一步,
y=sin^2 x+2sinxcosx+3cos^2 x=1+2cos^2 x+2sinxcosx=cos2x+sin2x=√2sin(2x+π/4)
1)T=2π/w=π
2)-π/2+2kπ≤2x+π/4≤π/2+2kπ,k∈Z(此非常关键,不写Z就会扣一分)
3)这也是一个易错点,y=√2sin(2x+π/4)==√2sin2(x+π/8),要抽2出来
所以函数的图像可以由y=√2sin2x,x∈R的图像左移π/8得来
y=sin^2 x+2sinxcosx+3cos^2 x
=1+2cos²x+sin2x
=cos2x+sin2x+2
=√2sin(2x+π/4)+2
最小正周期为 2π/2=π
增区间:
2x+π/4∈[2kπ-π/2,2kπ+π/2]
x∈[kπ-3π/8,kπ+π/8]
所以在[kπ-3π/8,kπ+π/8] k∈z 上是增函数
y=√2sin(2x+π/4)+2
=√2sin[2(x+π/8)]+2
y=√2sin2x
先向左平移π/8个单位
再向上平移2个单位得到
解y=2sinxcosx+3-2sin²x=sin2x+cos2x+2=√2sin(2x+π/4)+2=√2sin[2(x+π/8)]+2
1. 此函数 最小正周期 为π。
2.当2kπ-π/2≤2x+π/4≤2kπ+π/2,k∈Z时,此函数是增函数→kπ - 3π/8≤x≤kπ + π/8,k∈Z 故:当kπ - 3π/8≤x≤kπ + π/8,k∈Z时,此函数是增函数。
⑶函数的图像可以由y=√2sin2x,x∈R的图像经过怎样的变换得出?
y=√2sin2x左移π/8得y=√2sin[2(x+π/8)],再上移2单位得y=√2sin[2(x+π/8)]+2
(1)∵y=(sinx)^2+2sinxcosx+3(cosx)^2
=1+sin2x+2(cosx)^2
=1+sin2x+(1+cos2x)
=2+√2sin(2x+π/4)
∴T=2π/2=π(2)
(2)∵y=sinx在区间[2kπ-π/2,2kπ+π/2]k∈Z,上是增函数,
∴由2kπ-π/2≦2x+π/4≦2kπ+π/2,得x∈[kπ-3π/8,kπ+π/8]
∴y =2+√2sin(2x+π/4)在[kπ-3π/8,kπ+π/8]上是增函数
(3)函数y =2+√2sin(2x+π/4)的图像可以由y=√2sin2x按向量(-π/8,2)平移得到