已知x눀-3x+1=0时,求根号下x눀+1⼀x눀-2

求根号下x눀+(1⼀x눀)-2
2024-12-31 23:42:06
推荐回答(2个)
回答1:

待求式^2即为x^2-2*x^2*(1/x^2)+(1/x^2)
即为(X-1/X)^2=(X+1/X)^2-4
又x²-3x+1=0即为
x^2+1=3x
x+1/x=3
∴(X+1/X)^2-4=5
又待求式>0
∴根号下x²+1/x²-2=√5

回答2:

x²-3x+1=0
x=[3±√(9-4)]/2=(3±√5)/2
x²=(7±3√5)/2
一、
x²+1/x²-2
=(7+3√5)/2+1/[(7+3√5)/2]-2
=(7+3√5)/2+2/(7+3√5)-2
=[(7+3√5)^2]/[2(7+3√5)]+4/[2(7+3√5)]-2
=(49+21√5)/(7+3√5)-2
=(49+21√5)(7-3√5)/[(7+3√5)(7-3√5)]-2
=7-2
=5
二、
x²+1/x²-2
=(7-3√5)/2+1/[(7-3√5)/2]-2
=(7-3√5)/2+2/(7-3√5)-2
=[(7-3√5)^2]/[2(7-3√5)]+4/[2(7-3√5)]-2
=(49-21√5)/(7-3√5)-2
=(49-21√5)(7+3√5)/[(7-3√5)(7+3√5)]-2
=7-2
=5