通项公式,第n个加式可以表述成:
1/(1 + 2 + 3 + ... + n)
= 1/[n(n + 1)/2]
= 2/[n(n + 1)]
= 2[1/n - 1/(n + 1)]
那么代入:
1/1 + 1/(1 + 2) + 1/(1 + 2 + 3) + .... + 1/(1 + 2 + 3 + ... + 50)
= 1 + 2/(2*3) + 2/(3*4) + .... + 2/(50*51)
= 1 + 2*(1/2 - 1/3) + 2*(1/3 - 1/4) + ... + 2*(1/50 - 1/51)
=1 + 2*(1/2 - 1/51)
=100/51
解:原式=1+1/[(1+2)*2/2]+1/[(1+3)*3/2]+...+1/[(1+50)*50/2]
=1+2/(2*3)+2/(3*4)+...+2/(50*51)
=1+2*(1/2-1/3+1/3-1/4+...+1/50-1/51)
=1+2*(1/2-1/51)
=1+2*49/102
=1+49/51
=100/51
1+(48/50+1/50)=1又50分之49