1+2+3+...+n=n(n+1)/2
1+1/3+1/6+...+1/5050
=1/1+1/(1+2)+1/(1+2+3)+...+1/(1+2+...+100)
=2/(1*2)+2/(2*3)+2/(3*4)+...+2/(100*101)
=2[(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/100-1/101)]
=2(1-1/101)
=200/101
1/(1+2)=1/3
1/(1+2)+1/(1+2+3)=2/4
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)=3/5
.....
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+100)=99/101
答案应该是 1+99/101 ~
哈哈 刀鱼 你也有不会的数学题啊 你干嘛不问数学老师啊