解:原方程为 2 /(x-2)+ kx /(x²-4) = 3 /(x+2)首先,分母 x²-4 ≠ 0, 即 x ≠ ±2两边同时乘以 (x²-4),得2(x+2)+ kx = 3(x -2)化简得,(1-k) x = 10当 1-k ≠ 0 ,即 k ≠ 1时, x = 10 /(1-k)令 x = 10 /(1-k) = ± 2,此时原方程有增根则,k= 6 或 k = - 4∴当k= 6 或 k = - 4时,原分式方程有增根