证明:延长BM,交CD的延长线于点E∵AB∥CD∴∠A=∠MDE,∠ABM=∠E∵AM=DM∴△ABM≌△EDM∴AB=DE,BM=EM∵CM⊥BM∴BC=CE∴BC=CD+AB∴CM平分∠BAE(等腰三角形三线合一)∵CB=CE∴∠CBE=∠E∵∠E=∠ABM∴∠ABM=∠CBM即BM平分∠ABC