我只写思路,具体的内容你自己写吧:将f(x)=1/(1-x-x^2)=-1/(b-a)【1/(x-b)-1/(x-a)】=-1/(b-a)【1/(1-x/a)*1/a-1/(1-x/b)*1/b】=1/(b(b-a))【1/(1-x/b)】-1/(a(b-a))【1/(1-x/a)】,其中a,b是方程1-x-x^2=0的两个根,然后再利用1/(1-x)=1+x+x^2+x^3+...代入即得f(x)的Taylor展式,有了Taylor展式就得到了高阶导数。