拓扑,一个跟门萨同样古怪的“科技Word”。其定义,对绝大多数读者而言,不一定需要理解,但无妨知道———拓扑学,数学的一门分科,研究几何图形在一对一的双方连续变换下不变的性质。不少门萨题,来自拓扑学,其典例,是2005年10月8日刊发在《晚会·游戏》版上的那篇《四种颜色与地图》。此例在拓扑学中大名鼎鼎,叫做“四色问题”。
拓扑理论用途广泛,涉及空间规划、网络设计、通讯邮递乃至心理分析等诸多领域,人们不大了解罢了。说来趣怪,致使这门学科得以诞生的契机却是一款很是独特的消闲。
话说俄罗斯有座哥尼斯堡市,两条河于此间汇合,汇合处有个小岛,小岛跟其相对的3处河岸架设了7座桥。市民经常沿着河岸和小岛散步,于是很自然地就提出了一个实际问题:有无可能找到一条路线,能够沿它行走,经过全部7座桥却又不会重踏其中任何一座?
时为18世纪中叶,著名数学家、瑞士人欧拉旅游至该市,他对这个消闲点子作了一番琢磨,确定了这条路线。当其时,欧拉的指划,只不过是逢场作戏,被称为“七桥问题”。
迨至19世纪上半叶,有心人对欧拉的思路作了认真研究,在“七桥问题”基础之上,居然建立起一门崭新学科!显然极具文史素养的某位数学专家给这门学科起了个跟欧拉的原初研究无比贴切的学名———Topology!Topology是英文,其实质性部分Topo是一个同音同义的古希腊词的英文形变,意思是“地方、方位”。logy这个后缀也来自古希腊文,原意是“词语的聚集”,明治维新期间日本人大量翻译西方典籍,把它通译为“学科”之“学”。因之,若然对Topology作汉语直接对译,当为“方位学”。按,欧拉破解“七桥问题”之际,把3处河岸和1座小岛绘画成4个点,把7座桥绘画成7条线,点线相连,构成一个封闭的几何图形。想想看,以Topology概括欧拉的整个思路,是不是浑然天成?
有位中国人把Topo译为“拓扑”!谁?江泽涵先生是也!
江泽涵(1902-1994年),安徽旌德人,1926年毕业于南开大学,1930年获哈佛大学博士学位,1931年任北京大学数学系教授,1955年当选为中国科学院数理学部委员。他是把拓扑学引入中国的第一人,他出版的《拓扑学引论》是中国人编写的第一部拓扑学教材。
译Topo为拓扑,音义兼顾,形神俱备———“拓”者,对土地之开发也,“扑”者,全面覆盖也。
上世纪前半叶,学界中人大抵通今博古,学贯中西,对于国外学术及科技用语的汉译,令人拍案叫绝之作迭出,如霓虹(neon)、引擎(engine)、绷带(bandage)、图腾(totem),等等。反观近世,知识爆炸,外间新事物有如潮水般涌入,但在水中央的国人东张西望,却瞩目皆是IT、IE、ADSL、modem、WindowsXP、CT、CD、VCD、DVCD、DVD、mp3、G4……Oh,myGod,果真是一代新人胜旧人?
拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。
拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。
连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。
参考资料:拓扑学http://www.ikepu.com/datebase/briefing/maths/topology.htm
拓扑是Topo汉译而来的,一个跟门萨同样古怪的“科技Word”。其定义,对绝大多数读者而言,不一定需要理解,但无妨知道———拓扑学,数学的一门分科,研究几何图形在一对一的双方连续变换下不变的性质。不少门萨题,来自拓扑学,其典例,是2005年10月8日刊发在《晚会·游戏》版上的那篇《四种颜色与地图》。此例在拓扑学中大名鼎鼎,叫做“四色问题”。
拓扑理论用途广泛,涉及空间规划、网络设计、通讯邮递乃至心理分析等诸多领域,人们不大了解罢了。说来趣怪,致使这门学科得以诞生的契机却是一款很是独特的消闲。
有位中国人把Topo译为“拓扑”!谁?江泽涵先生是也!
江泽涵(1902-1994年),安徽旌德人,1926年毕业于南开大学,1930年获哈佛大学博士学位,1931年任北京大学数学系教授,1955年当选为中国科学院数理学部委员。他是把拓扑学引入中国的第一人,他出版的《拓扑学引论》是中国人编写的第一部拓扑学教材。
译,音义兼顾,形神俱备———“拓”者,对土地之开发也,“扑”者,全面覆盖也。
上世纪前半叶,学界中人大抵通今博古,学贯中西,对于国外学术及科技用语的汉译,令人拍案叫绝之作迭出,如霓虹(neon)、引擎(engine)、绷带(bandage)、图腾(totem),等等。反观近世,知识爆炸,外间新事物有如潮水般涌入,但在水中央的国人东张西望,却瞩目皆是IT、IE、ADSL、modem、WindowsXP、CT、CD、VCD、DVCD、DVD、mp3、G4……Oh,myGod,果真是一代新人胜旧人?
拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。
拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。
连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。
几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。
在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。
哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。
1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。
在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。
根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。
著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。
四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿次判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。
上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。
什么是拓扑学?
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。
拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。
举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。
拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。
在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。
在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。
应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。
直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。
我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。
拓扑变换的不变性、不变量还有很多,这里不在介绍。
拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。
二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。
因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。
拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。
拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。
朋友,复制我都看着花眼,自己看看吧,上面还有图片和分类。
百度百科:
拓扑学http://baike.baidu.com/view/41881.html
拓扑:http://baike.baidu.com/view/30631.htm
拓扑结构http://baike.baidu.com/view/82343.html
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。
拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。
举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。
拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。
在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。
在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。
应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。
直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。
我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。
拓扑变换的不变性、不变量还有很多,这里不在介绍。
拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。
二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。
因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。
拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。
拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。
计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。
①
总线拓扑结构
是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。
优点:结构简单、布线容易、可靠性较高,易于扩充,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。最著名的总线拓扑结构是以太网(Ethernet)。
②
星型拓扑结构
每个结点都由一条单独的通信线路与中心结点连结。
优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。
③
环形拓扑结构
各结点通过通信线路组成闭合回路,环中数据只能单向传输。
优点:结构简单、蓉以是线,适合使用光纤,传输距离远,传输延迟确定。缺点:环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最著名的环形拓扑结构网络是令牌环网(Token
Ring)
④
树型拓扑结构
是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的应用要求。缺点:资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。
⑤
网状拓扑结构
又称作无规则结构,结点之间的联结是任意的,没有规律。优点:系统可靠性高,比较容易扩展,但是结构复杂,每一结点都与多点进行连结,因此必须采用路由算法和流量控制方法。目前广域网基本上采用网状拓扑结构。