蝴蝶定理内容是什么?

2024-12-29 12:57:11
推荐回答(4个)
回答1:

蝴蝶效应(Butterfly Effect)是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。这是一种混沌现象。

美国气象学家爱德华·罗伦兹(Edward Lorenz)1963年在一篇提交纽约科学院的论文中分析了这个效应。“一个气象学家提及,如果这个理论被证明正确,一个海鸥扇动翅膀足以永远改变天气变化。”在以后的演讲和论文中他用了更加有诗意的蝴蝶。对于这个效应最常见的阐述是:“一个蝴蝶在巴西轻拍翅膀,可以导致一个月后德克萨斯州的一场龙卷风。”
这句话的来源,是由于这位气象学家制作了一个电脑程序,可以模拟气候的变化,并用图像来表示。最后他发现,图像是混沌的,而且十分像一只蝴蝶张开的双翅,因而它形象的将这一图形以“蝴蝶扇动翅膀”的方式进行阐释,于是便有了上述的说法。

蝴蝶效应通常用于天气,股票市场等在一定时段难于预测的比较复杂的系统中。

此效应说明,事物发展的结果,对初始条件具有极为敏感的依赖性,初始条件的极小偏差,将会引起结果的极大差异。

“蝴蝶效应”在社会学界用来说明:一个坏的微小的机制,如果不加以及时地引导、调节,会给社会带来非常大的危害,戏称为“龙卷风”或“风暴”;一个好的微小的机制,只要正确指引,经过一段时间的努力,将会产生轰动效应,或称为“革命”。

“蝴蝶效应”在混沌学中也常出现。又被称作非线性。

回答2:

蝴蝶定理

自从学习几何画板以来,我一直在思索着这样一个问题:怎么才能把“蝴蝶定理”推广一下。

我想,能不能把“蝴蝶定理”中的圆由一个变为两个,相应的,还保持一种美妙的性质呢?如图I,是“蝴蝶定理”,有结论EP=PF;如图II,是“蝴蝶定理”的演变,点P,Q,R,S是否也存在某种关系呢?

我在课下做了一个比较精确的图,并进行了测量,进而提出了猜测:QM*PM = MS*MR,或者QM+PM = MS+MR。我又做了几个图进行检验,结果误差都比较小。上机时,利用几何画板做了一个动画,发现误差变化范围很大。我就开始怀疑这个结论。但是我并不死心。我又进行了测算,终于发现等式:成立,其误差在千分位之后。而后给出了一个数学上的证明。

这件事使我感觉到几何画板有以下几个妙处:比手工做图方便、精确、直观、连续。

如图I,取圆O内一条弦的中点P,过P点作AB、CD交圆于A、B、C、D点,连AD、BC交弦于E、F点,则EP=PF。这就是著名的“蝴蝶定理”。

题目:过圆心O的两个同心圆内弦中点M作两条直线交圆于A、B、C、D、E、F、G、H,连AF、BE、CH、DG分别交弦于点P、Q、R、S,则有等式:成立。这就是蝴蝶定理的推广。

证明:引理,如右图,有结论

由及正弦定理即可得到:

原结论

作OM1AD于M1,OM2EH于M2,

于是,MA - MD = MB - MC = 2MM1 = 2Msin;

MH - ME = MG - MF = 2MM2 = 2Msin

且MA*MD = ME*MH,MB*MC = MF*MG,代入上式,又

故原式成立

证毕。

关于“广义蝴蝶定理”的认识是在自己数学知识的基础上,借助于GSP而独立完成的。抛开广义蝴蝶定理自身的意义不论,单凭其处理问题的过程:推测、猜想、验证、论证,这不能不说是为中学数学教育留下某种思考,对中学生创造力的培养提供某种借鉴。

回答3:

M为弦PQ的中点,AB和CD为过M点的另外两条弦。
AC,BD的连线交PQ于XY
则线段XY的中点为M。

蝴蝶定理

自从学习几何画板以来,我一直在思索着这样一个问题:怎么才能把“蝴蝶定理”推广一下。

我想,能不能把“蝴蝶定理”中的圆由一个变为两个,相应的,还保持一种美妙的性质呢?如图I,是“蝴蝶定理”,有结论EP=PF;如图II,是“蝴蝶定理”的演变,点P,Q,R,S是否也存在某种关系呢?

我在课下做了一个比较精确的图,并进行了测量,进而提出了猜测:QM*PM = MS*MR,或者QM+PM = MS+MR。我又做了几个图进行检验,结果误差都比较小。上机时,利用几何画板做了一个动画,发现误差变化范围很大。我就开始怀疑这个结论。但是我并不死心。我又进行了测算,终于发现等式:成立,其误差在千分位之后。而后给出了一个数学上的证明。

这件事使我感觉到几何画板有以下几个妙处:比手工做图方便、精确、直观、连续。

如图I,取圆O内一条弦的中点P,过P点作AB、CD交圆于A、B、C、D点,连AD、BC交弦于E、F点,则EP=PF。这就是著名的“蝴蝶定理”。

题目:过圆心O的两个同心圆内弦中点M作两条直线交圆于A、B、C、D、E、F、G、H,连AF、BE、CH、DG分别交弦于点P、Q、R、S,则有等式:成立。这就是蝴蝶定理的推广。

证明:引理,如右图,有结论

由及正弦定理即可得到:

原结论

作OM1AD于M1,OM2EH于M2,

于是,MA - MD = MB - MC = 2MM1 = 2Msin;

MH - ME = MG - MF = 2MM2 = 2Msin

且MA*MD = ME*MH,MB*MC = MF*MG,代入上式,又

故原式成立

证毕。

关于“广义蝴蝶定理”的认识是在自己数学知识的基础上,借助于GSP而独立完成的。抛开广义蝴蝶定理自身的意义不论,单凭其处理问题的过程:推测、猜想、验证、论证,这不能不说是为中学数学教育留下某种思考,对中学生创造力的培养提供某种借鉴。

回答4:

蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。