求助:高一数学题一道

已知cosθ=-3/5,θ∈(0,π),求sin(θ+π/4)的值
2024-12-25 21:02:42
推荐回答(5个)
回答1:

因为θ∈(0,π),所以sinθ>0
sinθ^2+cosθ^2=1,cosθ=-3/5,
所以sinθ=4/5
sin(θ+π/4)=sinθcosπ/4+cosθsinπ/4=4/5×根号2/2+(-3/5)×根号2/2=根号2/10

回答2:

因为θ∈(0,π),所以sinθ>0
sinθ=4/5
sin(θ+π/4)=sinπ/4cosθ+cosπ/4sinθ
=√2/2(cosθ+sinθ)
=√2/2×1/5
=√2/10

回答3:

由cosθ=-3/5,θ∈(0,π)
θ∈(π/2,π)
sinθ=4/5
sin(θ+π/4)
=sinθ*cosπ/4+cosθsinπ/4

回答4:

两角和公式. sin(a+b)=sinacosb+cosasinb
cos=-3/5(θ∈(0,π)),则sinθ=4/5;
sin(θ+π)=sinθcosπ/4+cosθsinπ/4
=√2/10

回答5:

sin(x+pai/4)=sinxcospai/4+cosxshipai/4
cosx=-3/5,x>pai/2
sinx=4/5
代入得十分之根号2