1,已知a(a-1)-(a^2-b)=5,求代数式(a^2+b^2)⼀2-ab的值。用完整式的知识解答

2,已知x+1/x=4,求:①x^2+1/x^2;②(x-1/x)^2
2024-12-28 06:30:43
推荐回答(4个)
回答1:

a(a-1)-(a^2-b)=5
所以
b-a=5
从而
(a^2+b^2)/2-ab
=1/2(a²-2ab+b²)
=1/2(a-b)²
=1/2×5²
=25/2

2.x+1/x=4,
平方得
x²+2+1/x²=16
①x²+1/x²=14
②(x-1/x)^2
=x²-2+1/x²
=14-2
=12

回答2:

a(a-1)-(a^2-b)=5
a^2-a-a^2+b=5
-a+b=5
a-b=-5

(a^2+b^2)/2-ab
=(a^2+b^2-2ab)/2
=(a-b)^2/2
=5^2/2
=25/2

x^2+1/x^2
=(x+1/x)^2-2
=4^2-2
=16-2
=14

(x-1/x)^2
=(x+1/x)^2-4
=4^2-4
=16-4
=12

回答3:

1.a(a-1)-(a^2-b)=5
a^2 - a - a^2 + b =5
b - a =5
2.(a^2+b^2)/2-ab
=(a^2+b^2-2ab)/2
=(b-a)^2/2
=25/2
=12.5

回答4:

①(x+1/x)^2=4^2
x^2+1/x^2+2=16
x^2+1/x^2=14
②(x-1/x)^2=x^2+1/x^2-2
=14-2
=12