求数列1*2,2*3,3*4……n(n+1)的前n项和?

2025-01-04 03:16:30
推荐回答(3个)
回答1:

因为n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3,所以
1*2+2*3+3*4+......+n(n+1)
=[1*2*3-0+2*3*4-1*2*3+3*4*5-2*3*4+……+n(n+1)(n+2)-(n-1)n(n+1)]/3
=[n(n+1)(n+2)]/3

回答2:

n(n+1)=n^2+n,分组求和,利用1^2+2^2+。。。。+n^2=n(n+1)(2n+1)/6求解

回答3:

=2*c(2,2)+2*c(3,2)+……+2*c(n+1,2)
=2*[c(2,2)+c(3,2)+……+c(n+1,2)]
=2*c(n+2,3)
=2*(n+2)(n+1)n/6
=n(n+1)(n+2)/3