x趋于0时 (cosx)^2=1 所以 为 lim 1/(sinx)^2-1/x^2=0lim[1/sinx^2-1/x^2]=(x^2-sinx^2)/x^2*sinx^2=(x^2-sinx^2)/x^4;用洛必达法则求导=(2x-sin2x)/4x^3=(2-2cos(2x))/12x^2=4sin(2x)/24x=8x/24x=1/3
=lim[(x²-sin²xcos²x)/(sin²x·x²)]=lim[(x²- 1/4 sin²2x)/(x^4)]=lim[x²- 1/8 (1-cos4x)]/(x^4)=lim[2x- 1/8 (sin4x·4)]/(4x³)=lim[2x- 1/2 ·sin4x]/(4x³)=lim[2- 2 cos4x]/(12x²)=lim[2(1- cos4x)]/(12x²)=lim[2· 1/2 (4x)²]/(12x²)=lim 16/12=4/3