求数列1⼀1*3,1⼀3*5,…,1⼀n(n+2)的前n项和Sn

2024-11-29 03:35:06
推荐回答(3个)
回答1:

应该是1/1*3,1/3*5,…,1/(2n-1)(2n+1)的前n项和Sn吧
Sn=1/1x3+1/3x5+...+1/(2n-1)(2n+1)
=(1/2)x[(3-1)/(1x3)+(5-3)/(3x5)+...+(2n+1-(2n-1))/(2n-1)(2n+1)]
=(1/2)x(1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1))
=(1/2)(1-1/(2n+1))
=1/2-1/(4n+2)

回答2:

1/n(n+2)=1/2[1/n-1/(n+2)]
所以Sn=1/2[1-1/3+1/3-1/5+......+1/n-1/(n+2)]=1/2[1-1/(n+2)]=(n+1)/(2n+4)

回答3:

列项相消