上面我们学习了查表和用计算器求平方根的方法.或许有的同学会问:不用平方根表和计算器,可不可以求出一个数的平方根呢?先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析.
根据两数和的平方公式,可以得到
1156=(30+a)2=302+2×30a+a2,
所以 1156-302=2×30a+a2,
即 256=(3×20+a)a,
这就是说, a是这样一个正整数,它与 3×20的和,再乘以它本身,等于256.
为便于求得a,可用下面的竖式来进行计算:
根号上面的数3是平方根的十位数.将 256试除以20×3,得4.由于4与20×3的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到
1156=342,
或
上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.
如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到
笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值.
我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.
抄来的,以前上学不知道,这次网上见过就记下了。
首先从小数点往前往后每两位分成一节
举个例子:计算√10
3. 1 6 2 2 7--------
-----------------------------
√10’00’00’00’00’--------
3| 9 3 第1位3
-------
6 1|100 2*3*10+1 =61 第2位1
| 61
-------
626 | 3900 2*31*10+6 =626 第3位6
| 3756
--------
6322|14400 2*316*10+2 =6322 第4位2
|12644
---------
63242|175600
|126484
-----------
632447|4911600
|4427129
---------
××××××00(如此循环下去)
所以,√10=3.16227-------
再如根号7
= 2. 6 4 5 ?
---------------------
2 | 7
4
--------------
4 6 |300
276
--------------------
52 4 | 2400
2096
-----------------------------
528 5 | 30400
26425
-------------------------------
5290 ? | 3 9 75 00
1.从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开;
2.求不大于左边第一节数的完全平方数,为“商”;
3.从左边第一节数里减去求得的商,在它们的差的右边写上第二节数作为第一个余数;
4.把商乘以20,试除第一个余数,所得的最大整数作试商(如果这个最大整数大于或等于10,就用9或8作试商);
5.用商乘以20加上试商再乘以试商。如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止;
6.用同样的方法,继续求。
一般来说,只有背一些常用数值记忆法。比如说19*19=361,那么求361平方根,就是19.
但是往往数值不是那么整,只有用计算器了。其实手工也是可以算的。就比如说算20的平方根,先知道4*4=16,5*5=25,那么20的平方根必然是4点几。然后再算4.5*4.5等于多少,与20比较,然后再确定下一位。这样很麻烦,但是是唯一的办法,计算器也是这个原理算的,只不过它算的很快。
首先从小数点往前往后每两位分成一节
举个例子:计算√10
3. 1 6 2 2 7--------
-----------------------------
√10’00’00’00’00’--------
3| 9 3 第1位3
-------
6 1|100 2*3*10+1 =61 第2位1
| 61
-------
626 | 3900 2*31*10+6 =626 第3位6
| 3756
--------
6322|14400 2*316*10+2 =6322 第4位2
|12644
---------
63242|175600
|126484
-----------
632447|4911600
|4427129
---------
××××××00(如此循环下去)
所以,√10=3.16227-------
再如根号7
= 2. 6 4 5 ?
---------------------
2 | 7
4
--------------
4 6 |300
276
--------------------
52 4 | 2400
2096
-----------------------------
528 5 | 30400
26425
-------------------------------
5290 ? | 3 9 75 00