1
y'^2-yy'=1
(y'-y/2)^2=1+y^2/4
y'=y/2+√[4+y^2]/2 y'=y/2-√[4+y^2]/2
dy/[y/2+√[4+y^2]/2]=dx dy/[y/2-√[4+y^2]/2
通解
x+C=-1/[1+y/√(4+y^2)]+ln|1+y/√(4+y^2)|/|1-y/√(4+y^2)]
或
x+C=1/[1+y/√(4+y^2)]+ln|1+y/√(4+y^2)|/|1-y/√(4+y^2)]
∫dy/[y/2+√[4+y^2]/2]
y/2=tanu cosu^2=2/√(4+y^2) sinu=y/√(4+y^2)
=2∫dtanu/[tanu+√1+tanu^2]=2∫du/[sinucosu+cosu]
=2∫cosu/[cosu^2(1+sinu)]=2∫dsinu/[(1-sinu^2)(1+sinu)]
sinu=t
=2∫dt/[(1-t^2)(1+t)]=2∫dt/[(1-t)(1+t)^2]=∫dt/(1+t)^2+∫dt/(1-t)(1+t)=[-1/(1+t)]+(1/2)ln|1+t|/|1-t|+C
∫dy/[y/2-√(4+y^2)/2]
y/2=tanu =2∫dsinu/[(1-sinu^2)(sinu-1)]
sinu=t
=2∫dt/[1-t^2)(t-1)]= -2∫dt/(t-1)^2(t+1)=-∫dt/(t-1)^2-∫dt/(t+1)(t-1)
=1/(t-1)+(1/2)ln|1+t|/|1-t|+C
2
假设y1=x y2=x+e^x y3=1+x+e^x 是方程y"+a1(x)y'+a2(x)y=Q(x) 的解 求方程的通解
通解 y=x+1+Ce^x
3求y"-5y'+4y=(x^2+1)e^x的特解
y''-5y'+4y=0
特征方程
r^2-5r+4=0
r1=1,r2=4
y=C1e^x+C2e^4x
设y''-5y'+4y=(x^2+1)e^x有解
y=C(x)e^x
y'=C'e^x+Ce^x
y''=C''e^x+2C'e^x+Ce^x
C''+2C'+C-5C'-5C+4C=1+x^2
C''-3C'=1+x^2
C‘’-3C‘=0
C=C01+C02e^3x
设C=mx^3+nx^2+lx
C'=3mx^2+2nx+l
C''=6mx+2n
6mx+2n-9mx^2-6nx-3l=1+x^2
2n-3l=1 -9m=1,m=-1/9 6m-6n=0,n=-1/9, l=11/27
C(x)=(-1/9)x^3+(-1/9)x^2+(11/27)x+C01+C02e^3x
y=[(-1/9)x^3+(-1/9)x^2+(11/27)x+C01+C02e^3x]e^x
通解
y=[(-1/9)x^3+(-1/9)x^2+(11/27)x+C01]e^x+C2e^3x+C02e^4x