(1-1⼀2)*(1+1⼀2)*(1-1⼀3)*(1+1⼀3)*......*(1-1⼀100)*(1+1⼀100)=?

2024-12-25 19:54:49
推荐回答(5个)
回答1:

除了第一项和最后一项,其他的都能消掉,例如:1+1/2=3/2 1-1/3=2/3 互为倒数,倒数相乘,得1,最后只剩下 1-1/2 和 1+1/100 ,(这里很多人都错了。推荐答案都错了)
1-1/2=1/2 1+1/100=101/100
1/2*101/100= 1*101/2*100= 101/200

回答2:

(1-1/2)*(1+1/2)*(1-1/3)*(1+1/3)*......*(1-1/100)*(1+1/100)
=(1-1/2)*[(1+1/2)(1-1/3)][(1+1/3)(1-1/4)].........*[(1+1/99)(1-1/100)]*(1+1/100)
=(1-1/2)(1+1/100)
=101/200

回答3:

(1-1/2)*(1+1/2)*(1-1/3)*(1+1/3)*......*(1-1/100)*(1+1/100)
=(1/2)(3/2)(2/3)(4/3)...(99/100)(101/100)
=(1/2)(2/3)(3/4)..(99/100)(3/2)(4/3)....(101/100)
=(1/100)*(101/2)
=101/200

回答4:

(1-1/2)*(1+1/2)*(1-1/3)*(1+1/3)*......*(1-1/100)*(1+1/100)
=(1/2)(3/2)(2/3)(4/3)...(99/100)(101/100)
=(1/2)(2/3)(3/4)..(99/100)(3/2)(4/3)....(101/100)
=(1/100)*(101/2)
=101/200 ~

回答5:

原式=(1+1/2)(1+1/3)……(1+1/99)(1-1/2)(1-1/3)……(1-1/99)
=(3/2)(4/3)……(100/99)(1/2)(2/3)……(98/99)
=(100/2)(1/99)
=50/99