x^15+x^14...........+x^2+x+1
=(x^15+x^14)+(x^13+x^12)+………+(x^3+x^2)+(x+1)
=x^14(x+1)+x^12(x+1)+……+x^2(x+1)+(x+1)
=(x+1)(x^14+x^12+……+x^2+1)
=(x+1)[x^12(x^2+1)+……+(x^2+1)]
=(x+1)(x^2+1)[x^12+x^8+x^4+1]
=(x+1)(x^2+1)(x^4+1)(x^8+1)
x^15+x^14...........+x^2+x+1
=(x+1)(x²+1)(x³+1)(x^4+1)(x^5+1)